# Self organizing maps-II

## Prerequisites :-

My Previous blog :- https://machinelearners.net/2017/07/24/first-blog-post/

Some basic knowledge of python language and Linear algebra.

Mathematics behind each process of Self organizing maps.

# ·      Competitive Process :- # ·      Co-operative process  # ·      Synaptic Weight Adaptation process.

Synaptic weight adaptation is based on the principle of Hebbian learning mechanism which states that if presynaptic properties and post synaptic properties are correlated then the neuron connection is strengthened by increasing the weight. And with this Hebbian hypothesis term we also add a forgetting term so that unlimited learning doesn’t take place. After saturation of increasing term of weights learning should be stopped. # ·      Algorithm Of Self Organizing maps :- # ·      Python Implementation of Self organizing maps:-

In this code we cluster out input inhibiting similar properties, a  high dimensional image(RGB type) using self organizing maps.

import numpy as np
import math
from PIL import Image

class SOM:
def __init__(self, x_size, y_size, trait_num, t_iter, t_step):

#randomly initializing weights
self.weights = np.random.randint(256, size=(x_size, y_size, trait_num)).astype(‘float64’)

#number of iterations and steps
self.t_iter = t_iter
self.t_step = t_step

def show(self):
im = Image.fromarray(self.weights.astype(‘uint8′), mode=’RGB’)
im.format = ‘JPG’
im.show()

def distance_matrix(self, vector):

#Discriminant function
return np.sum((self.weights – vector) ** 2, 2)

#Best matching unit

def bmu(self, vector):
distance = self.distance_matrix(vector)
return np.unravel_index(distance.argmin(), distance.shape)

#Topological neighborhood

def bmu_distance(self, vector):
x, y, rgb = self.weights.shape
xi = np.arange(x).reshape(x, 1).repeat(y, 1)
yi = np.arange(y).reshape(1, y).repeat(x, 0)
return np.sum((np.dstack((xi, yi)) – np.array(self.bmu(vector))) ** 2, 2)

#Final neighborhood

def teach_row(self, vector, i, dis_cut, dist):
bmu_distance = self.bmu_distance(vector).astype(‘float64’)
if dist is None:
else:
temp = dist ** 2 – bmu_distance
influence = np.exp(-bmu_distance / (2 * hood_radius_2))
if dis_cut:
influence *= ((np.sign(temp) + 1) / 2)
return np.expand_dims(influence, 2) * (vector – self.weights)

#Weights updation

def teach(self, t_set, distance_cutoff=False, distance=None):
for i in range(self.t_iter):
for x in t_set:
self.weights += self.teach_row(x, i, distance_cutoff, distance)
self.show()

#We apply SOM on image of size 200*200*3

s = SOM(200, 200, 3, 100, 0.1)
# t_set = np.array([[200, 0, 0], [0, 200, 0], [0, 0, 200], [120, 0, 100]])
t_set = np.random.randint(256, size=(15, 3))
s.teach(t_set)

These nodes of different colors in the following self organized maps represents the clusters of similar type of inputs in the image matrix. 